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ABSTRACT

We present an approach for synthesizing biological tissue tex-

tures from existing tissue samples. At microscopic resolution,

tissues are characterized by a spatial arrangement of nuclei,

cytoplasm, red-blood cells (RBCs) and adipose components

etc. We employ 2-point correlation functions (2-pcfs) to en-

code the geometrical aspects of component arrangements in

the synthesis process. The 2-pcfs belong to a class of neigh-

borhood density estimators and were recently introduced in

microscopic image analysis. We provide examples of their

application toward synthesis of histology-based tissue tex-

tures. We show that our methods retain properties such as

component volume fractions, sizes and density in compari-

son to standard approaches. Our methods are also shown to

improve the performance of segmentation algorithms by au-

tomatically generating labeled texture classes.

Index Terms— N -point correlation functions, texture

analysis

1. INTRODUCTION

The problem of texture synthesis has been studied extensively

in the field of material science[1, 2], computer graphics [3]

and image analysis [4]. These techniques, in general, enhance

the perceptual similarity between the original and synthesized

textures [5, 6] and find applications in creating novel graphics,

animation and models etc. Texture synthesis, in the context

of biomedical imaging, constitutes an important step towards

creating realistic models of biological tissue and imaging sys-

tems for the timely diagnosis of disease. Biological texture

synthesis was first studied by Brettle et al. [7] for conducting

psychophysical experiments. Bochud et al. [8] improvised by

presenting a biological synthesis technique that maintained

first and second-order statistics of the original image. They

used synthesized images to provide the user with a large num-

ber of independent samples, in a controlled environment with

analytically tractable properties.

Our work applies the same idea of synthesizing new

samples in order to enhance the performance of supervised

learning-based techniques. We seek to retain features that

characterize a texture class, while providing greater entropy

in the training set. For example, consider the problem of seg-

menting large histology images consisting of several tissue

classes [9]. This approach classifies (using k-nearest neigh-

bor) individual blocks of the image into one of many texture

classes. The training phase requires many labeled examples

of the tissue class to be available. Labeled samples are ex-

pensive to generate because it requires an expert to intervene.

Furthermore, such algorithms would need to be frequently

re-trained for a new novel dataset for optimal performance.

Hence, manual intervention becomes quite significant and

cumbersome. Our technique focuses on synthesizing new

samples that maintains some microstructural features from

the original class. These microstructural features robustly

characterize tissue textures.

Earlier, we had characterized a tissue sample as a spa-

tial arrangement of nuclei, cytoplasm, red-blood cells (RBCs)

and adipose components etc. The organization of compo-

nents is related to the definition of a material microstructure.

Microstructure may be measured as a collection (ensemble)

of points, lines, internal surfaces, and volumes [10]. Each

microstructural feature is associated with size, shape, vol-

ume, surface area, length and curvature attributes etc. Sta-

tistical distributions of such attributes collectively specify the

geometric state of a microstructure. These properties of mi-

crostructure are formalized by the statistical N -point correla-

tion functions (N -pcfs) [11]. In this work, we show the utility

of 2-pcfs for comparing the biological organization in images

in terms of component arrangements. We demonstrate syn-

thesis results on histology images of adipose tissue from the

mammary gland of a mouse and provide classification results

showing the improvement gained by supplementing the train-

ing data with synthesized samples of tissue classes.

2. TEXTURE SYNTHESIS

The texture synthesis approach that we employ consists of 3

components: (i) measuring microstructural features that char-

acterize tissues using 2-pcfs, (ii) a similarity metric (kernel)

to compare in the 2-pcf space and (iii) a search technique us-

ing kernel principal components analysis for finding similar

texture regions. We now describe each component and finally

provide an overview of the overall synthesis approach.

404978-1-4244-2003-2/08/$25.00 ©2008 IEEE ISBI 2008



2.1. 2-Point Correlation Functions

The 2-pcf describes the spatial distribution of a material com-

ponent in a multi-phase medium. A detailed description of

2-pcfs and other microstructural functions is given in [11]. In

brief, we denote by I(i)(x) the indicator function for the ith

phase at point x in the medium such that

I(i)(x) =

{
1 if point x is in component i,

0 otherwise.

The variable I(i)(x) is thus a random variable whose dis-

tribution characterizes the material. The expected value of

the variable
〈I(i)(x)

〉
is called the 1-pcf and is denoted by

S
(i)
1 (x) . Similarly, the 2-pcf is defined as

S
(i)
2 (x1,x2) =

〈
I(i)(x1)I(i)(x2)

〉
(1)

If the material is assumed to be statistically isotropic, that

is, the distribution is rotationally and translationally invariant,

then the distance between x1 and x2 is sufficient to parame-

terize the two-point probability function. Thus the 2-pcf for

a statistically isotropic medium is given by S
(i)
2 (r) where r

is the distance separating x1 and x2. Similarly, the 1-pcf for

an isotropic medium is constant everywhere. Thus S
(i)
1 = φi

gives the volume fraction of phase i in the material.

In order to define a similarity measure for the 2-pcf fea-

ture we look into some of its properties. Consider the matrix

Γ where

Γij = S2(si − sj) (2)

where i and j are two arbitrary scales. If we evaluate S2 at n
scales from s1 to sn then the resulting n × n matrix Γ can be

shown to be symmetric and positive semi-definite. The eigen-

vectors of Γ form an orthogonal basis, with the corresponding

eigenvalues providing the scale. We use this property to de-

fine the similarity between two matrices Γ1 and Γ2. Given the

spectral decomposition Γ1 = E1Λ1E
T
1 and Γ2 = E2Λ2E

T
2 ,

we define a similarity measure

k(Γ1, Γ2) = tr(E1Λ
− 1

2
1 )T (E2Λ

− 1
2

2 ) (3)

Essentially, the similarity is the sum of the dot products

of corresponding (scaled) eigenvectors of each matrix.

2.2. Kernel PCA

Kernel Principal Components Analysis (Kernel PCA) is a

non-linear extension of the standard PCA algorithm which

can be used to extract a non-linear structure from a possibly

high dimensional dataset [12]. In brief, kernel PCA finds the

eigenvectors of the Gram matrix (dot product matrix) of a

dataset that is defined with respect to a kernel. Regular PCA

can be shown to be a special case of kernel PCA when the

dot product is the canonical Euclidean dot product. With an

appropriately defined kernel, using kernel PCA for feature

extraction provides the lowest mean-squared approximation

error in representing the data points in the implicit feature

space defined by the kernel k. For a given feature point x,

the component of its projection in the ith largest principal

component of the feature space is given by:

x̃i =
m∑

j=1

αi
jk(x,xj) (4)

where αi
j is the ith component of the jth eigenvector of the

Gram matrix and xj is the jth data point. We use the ker-

nel defined in Equation 3 for performing kernel PCA on the

data points. We note that the kernel we define is not positive

definite so we use the standard technique of subtracting the

smallest eigenvalue from the diagonal of the Gram matrix in

order to guarantee positive-definiteness.

2.3. Synthesis Algorithm

The texture synthesis technique iteratively constructs an im-

age that has similar textural properties as that of a specified

target image. The similarity measure can be chosen based on

the feature that we want to preserve. The technique is based

on a general paradigm prevalent in texture synthesis in com-

puter graphics literature - global similarity between two tex-

tures is achieved by imposing local similarity between pairs of

neighborhoods in the two textures. In other words, if we ev-

ery neighborhood of the synthesized image is similar to some

neighborhood of the target image, then the two textures are

similar. In order to reduce computational complexity, we con-

sider only a subset neighborhoods but ensure that they have

sufficient overlap. This idea is exemplified in [5]. Our tech-

nique is modeled along a similar paradigm and seeks to retain

the specified features from the target image.

Given a target image T we extract the set NT of image

patches corresponding to local overlapping neighborhoods of

T by sliding a window across the image. Each patch captures

the local structure of the image.Similarly, we extract NS , the

set of image patches for a randomly initialized synthetic im-

age S. We use kernel PCA with the 2-pcf kernel on the set

NT ∪ NS to get a lower dimensional representation that is

optimal with respect to the kernel, i.e., has the lowest mean-

squared approximation error in the feature space defined by

the kernel. With this representation, we can now use the stan-

dard (Euclidean) nearest neighbor algorithm on each element

of NS to find the most similar image patch n NT . We replace

each element in NS with its nearest neighbor from NT .

The updated image S′ is constructed by replacing the

original image patches with the corresponding patches from

the updated set NS . Since we used a sliding window to

extract the patches, the updated image will contain regions

of overlap The overlapping regions are assigned the median

of the values across all overlapping patches in the region.

That is, if n tiles overlap at a pixel location x, then the value
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assigned to the pixel is the median of the n values obtained

from each of the tiles at the location x. This completes one

iteration of the algorithm. The iterations proceed until the

number of replaced patches drops below a threshold.

To reiterate, the goal of the algorithm is to construct a

new image such that every neighborhood in the image is sim-

ilar to some neighborhood in the target image. By allowing

overlaps between neighborhoods, the local similarity of tex-

ture induces a global similarity between the two images. By

using the 2-pcf feature to measure similarity, we coerce the

resulting image to have similar 2-pcf characteristics.

3. EXPERIMENTS AND RESULTS

We present results of the synthesis technique on histology im-

ages of adipose tissue from the mammary gland of a mouse.

The algorithm proceeds in a coarse to fine fashion - the texture

at the coarsest level is synthesized first, and the finer levels of

texture are progressively synthesized using the output of the

previous level for initialization. We used a target texture at

resolution 512 × 512 pixel and a window width of 32 pixels

with a 16 pixel overlap. The lower levels of resolution have

proportionate window and overlap dimensions. The coars-

est level of the synthesized image was initialized randomly.

An approximate nearest neighbor algorithm was used to find

the closest match between windows. The target texture along

with the synthesized texture at different stages of synthesis

are shown in Fig. 1.

(a) Target texture (b) Result at Level 0

(c) Result at Level 2 (d) Result at Level 4

Fig. 1.

We compared the performance of the algorithm using two

different similarity measures - the 2-pcf kernel and sum of

squares error (SSE). SSE is used for comparison by virtue of

it being a standard measure of error in Euclidean space. Fig

2 shows the resulting textures, demonstrating that the 2-pcf

measure is able to better preserve the characteristics of the

target texture. We also compared some seminal functions that

are used to characterize microstructures, summarized in Ta-

ble 1. The area fraction is the ratio of the area covered by a

component to the total area of the medium. The average com-

ponent size the average size of blobs of a component in the

medium. 2-pcf(normalized) is the similarity between the 2-

pcf’s normalized between 0 and 1. The results were obtained

using 10 images from each type. The standard deviation of

the results is given in parenthesis. The results illustrate that

the 2-pcf similarity measure is able to preserve the statistics

that characterize the microstructures in the target image.

(a) Synthesized using 2-pcf (b) Synthesized using SSE

Fig. 2. Synthesis results using 2-pcf and SSE

Original Syn. 2-pcf Syn. SSE

Area Fraction 0.79 0.85 (.01 ) 0.91(.01)

Avg. Comp. size 451 514 (60) 2550 (550)

2-pcf (Norm.) 1 0.86 (.03) 0.52 (.02)

Table 1. Comparing statistics from synthesis results

We show that the synthesis technique can also be used

to boost the performance of segmentation algorithms by pro-

viding synthesized ground truth data. As discussed before,

most segmentation techniques require many labeled examples

of a texture class to be available. The quality of segmenta-

tion depends on the number and quality of the labeled data.

By synthesizing new examples of a texture class that reliably

preserve the characteristics of the original sample, we can im-

prove of the segmentation quality. To illustrate this point, we

conduct the following experiment. We train a classifier us-

ing a single example each of two texture classes. The clas-

sification methodology used was similar to that employed in

[9]. We add one new synthesized example to each texture
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class in the training set, and retrain the classifier. We pro-

gressively add new synthesized examples, retrain, and record

the performance of the classifier on a testing set. Fig 3 shows

the performance of a nearest-neighbor classifier on two tex-

ture classes. The experiment was repeated by choosing 10

different sets of training examples. The classification results

for a single example are poor as expected. As the number of

synthesized examples are increased, the classification results

progressively improves.

Fig. 3. Performance of texture classification by increasing

training set using synthesized examples. (Error bars mark one

standard deviation)

These results indicate that by providing just a few labeled

examples of texture classes, we will be able to achieve sig-

nificantly better segmentation results by supplementing our

training set with synthesized examples. While a conclusive

result that supports this claim would require performing seg-

mentation on an image with multiple textures, these results

support the hypothesis that texture synthesis can directly aid

texture segmentation.

4. DISCUSSION

The synthesis technique works on a uniform scale at each

level. This results in undesired blurring especially when the

scale of the texture is smaller than the window. An adaptive

version of the algorithm, which identifies the local scale at

every level can help alleviate this problem. Further, an in-

teresting extension of the work would be to synthesize 3D

textures given 2D slices of the texture, borrowing ideas from

stereology.

In conclusion, we have presented a synthesis technique

designed to preserve important microstructural characteristics

that are used in the analysis of biological textures. The goal

of synthesis, in the context we have defined, is to aid analysis.

The motivation to do so lies in the fact that generating labeled

data is expensive. We have presented indicative results to sup-

port the claim that synthesized data can be used for segmen-

tation of biological tissue textures using only a few labeled

examples.
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